If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-252=0
a = 9; b = 0; c = -252;
Δ = b2-4ac
Δ = 02-4·9·(-252)
Δ = 9072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9072}=\sqrt{1296*7}=\sqrt{1296}*\sqrt{7}=36\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{7}}{2*9}=\frac{0-36\sqrt{7}}{18} =-\frac{36\sqrt{7}}{18} =-2\sqrt{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{7}}{2*9}=\frac{0+36\sqrt{7}}{18} =\frac{36\sqrt{7}}{18} =2\sqrt{7} $
| |8-5n|=-3.25 | | 5/6x-1/2-2/3x=4/3 | | 4x-2=3x+4. | | n-4/2=3 | | -42-2n=6 | | 78+(4z-2)=180 | | 14-2x=60 | | 1/3v+23/6-1/3=7/2 | | 550000/350000=1750/x | | x-6=0,8x | | 20=2f+12 | | X^3=1+i | | 2x+2(-3x-14)=4 | | -3(-6n-5)=-36 | | 10x+9=3x+37 | | 1/2(8x-4)=-13 | | 14x+3=2x+9 | | 550000/1750=350000/x | | (5-7i)+(-7+5i)=0 | | 7-4c/7=-3 | | x+12=7x+3 | | 35+8y=3y | | 7x-13=-5x-20 | | 78=(4z-2)=180 | | 2x-4=-4(x-5) | | 5(6-3z)+13z+2z=7 | | 11r+3-7r=51 | | 6k^2+7k-49=0 | | -2(5w-4)+3w=12 | | 4(1/2)+q=9(1/2) | | 3/8x-5/8x+14=6 | | 3/8x-5/8+14=6 |